题目内容
【题目】(2016四川省乐山市第23题)如图1,四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=.
(1)求CD边的长;
(2)如图2,将直线CD边沿箭头方向平移,交DA于点P,交CB于点Q (点Q运动到点B停止),设DP=x,四边形PQCD的面积为,求与的函数关系式,并求出自变量的取值范围.
【答案】(1);(2)().
【解析】
试题分析:(1)分别延长AD、BC相交于点E,在Rt△ABE中,解直角三角形可得BE,EC,AE的长,又∠E+∠A=90°,∠E+∠ECD=90°,得到∠A=∠ECD,由tanA=,得到cosA= cos∠ECD =,从而得到CD的长;
(2)由(1)可知tan∠ECD=,得到ED=,由PQ∥DC,可知△EDC∽△EPQ,得到PQ=,由,得到y=,而当Q点到达B点时,点P在M点处,由EC=BC,DC∥PQ,得到DM=ED=,故可得自变量x的取值范围.
试题解析:(1)如图1,分别延长AD、BC相交于点E,在Rt△ABE中,∵tanA=,AB=3,BC=2,∴BE=4,EC=2,AE=5,又∠E+∠A=90°,∠E+∠ECD=90°,∴∠A=∠ECD,∵tanA=,∴cosA=,∴cos∠ECD=,∴CD=;
(2)由(1)可知tan∠ECD=,∴ED=,如图2,由PQ∥DC,可知△EDC∽△EPQ,∴,∴,即PQ=,∵,∴,即=,∴当Q点到达B点时,点P在M点处,由EC=BC,DC∥PQ,∴DM=ED=,∴自变量x的取值范围为:.
练习册系列答案
相关题目