题目内容
如图,在Rt△ABC中,∠C=90°,∠A=30°,
.若动点D在线段AC上(不与点A、C重合),过点D作DE⊥AC交AB边于点E.
(1)当点D运动到线段AC中点时,DE= ;
(2)点A关于点D的对称点为点F,以FC为半径作⊙C,当DE= 时,⊙C与直线AB相切.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230330351716598.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033035109680.png)
(1)当点D运动到线段AC中点时,DE= ;
(2)点A关于点D的对称点为点F,以FC为半径作⊙C,当DE= 时,⊙C与直线AB相切.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230330351716598.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033035187412.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033035203556.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033035218597.png)
(1)求出BC,AC的值,推出DE为三角形ABC的中位线,求出即可;
(2)求出AB上的高,CH,即可得出圆的半径,证△ADE∽△ACB得出比例式,代入求出即可.
解:(1)∵∠C=90°,∠A=30°,
,
∴BC=
AB=
,AC=6,
∵∠C=90°,DE⊥AC,
∴DE∥BC,
∵D为AC中点,
∴E为AB中点,
∴DE=
BC=
,
故答案为:
;
(2)过C作CH⊥AB于H,
∵∠ACB=90°,BC=
,AB=
,AC=6,
∴由三角形面积公式得:
BC•AC=
AB•CH, CH=3,
分为两种情况:
①如图1,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230330353594464.png)
∵CF=CH=3,
∴AF=6﹣3=3,
∵A和F关于D对称,
∴DF=AD=
,
∵DE∥BC,
∴△ADE∽△ACB,
∴
,
∴
=
,
DE=
;
②如图2,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230330354374686.png)
∵CF=CH=3,
∴AF=6+3=9,
∵A和F关于D对称,
∴DF=AD=4.5,
∵DE∥BC,
∴△ADE∽△ACB,
∴
,
∴
=
,
DE=
;
故答案为:
或![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033035218597.png)
(2)求出AB上的高,CH,即可得出圆的半径,证△ADE∽△ACB得出比例式,代入求出即可.
解:(1)∵∠C=90°,∠A=30°,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033035109680.png)
∴BC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033035249424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033035249488.png)
∵∠C=90°,DE⊥AC,
∴DE∥BC,
∵D为AC中点,
∴E为AB中点,
∴DE=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033035249424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033035187412.png)
故答案为:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033035187412.png)
(2)过C作CH⊥AB于H,
∵∠ACB=90°,BC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033035249488.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033035327482.png)
∴由三角形面积公式得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033035249424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033035249424.png)
分为两种情况:
①如图1,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230330353594464.png)
∵CF=CH=3,
∴AF=6﹣3=3,
∵A和F关于D对称,
∴DF=AD=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033035374474.png)
∵DE∥BC,
∴△ADE∽△ACB,
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033035390964.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033035390735.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033035405596.png)
DE=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033035203556.png)
②如图2,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230330354374686.png)
∵CF=CH=3,
∴AF=6+3=9,
∵A和F关于D对称,
∴DF=AD=4.5,
∵DE∥BC,
∴△ADE∽△ACB,
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033035390964.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033035390735.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033035483557.png)
DE=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033035218597.png)
故答案为:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033035203556.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033035218597.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目