题目内容
【题目】 如图,四边形ABCD内接于以BC为直径的圆,圆心为O,且AB=AD,延长CB、DA交于P,过C点作PD的垂线交PD的延长线于E,且PB=BO,连接OA.
(1)求证:OA∥CD;
(2)求线段BC:DC的值;
(3)若CD=18,求DE的长.
【答案】(1)详见解析;(2);(3)DE=.
【解析】
(1)连接BD,由圆周角定理可知∠BDC=90°,即CD⊥BD,再由AB=AD可知,则OA⊥BD,由此即可得出结论;
(2)设⊙O的半径为r,则PB=OB=OC=OA=r,再由OA∥CD可知,△OAP∽△CDP,故可得出=,故可用r表示出CD的长,再求出BC:DC的值即可;
(3)由OF∥CD,OB=OC根据中位线定理可以求出OF,AF;再根据勾股定理在Rt△DBC中可以求出BD,DF;接着在Rt△ADF中求出AD;然后利用平行线的性质得∠FAD=∠CDE证明△AFD∽△DEC,利用相似三角形的对应边成比例可以求出DE.
(1)证明:连接BD,交OA于点F.
∵BC是⊙O的直径,
∴∠BDC=90°,即CD⊥BD,
∵AB=AD,
∴
∴OA⊥BD,
∴OA∥CD;
(2)解:设⊙O的半径为r,
∵PB=OB,
∴PB=OB=OC=OA=r,
∵OA∥CD,
∴△OAP∽△CDP,
∴=,=,解得CD=,
∴==;
(3)解:∵CD=18, CD=,∴r=12
∵OF∥CD,==,
∴OF=9,AF=3;
∵BD==6,
∴DF=BD=3,
∴AD==6;
∵∠AFD=∠DEC=90°,OA∥DC,∠FAD=∠CDE,
∴△AFD∽△DEC,
∴=,即=;
∴DE=.
【题目】某社区组织“献爱心”捐款活动,并对部分捐款户数进行调查和分组统计,数据整理成如下统计图表(图中信息不完整).
捐款户数分组统计表
组别 | 捐款额(x)元 | 户数 |
A | 1≤x<100 | 2 |
B | 100≤x<200 | 10 |
C | 200≤x<300 | c |
D | 300≤x<400 | d |
E | x≥400 | e |
请结合以上信息解答下列问题:
(1)本次调查的样本容量是______;
(2)d=______,并补全图1;
(3)图2中,“B”所对应扇形的圆心角为______度;
(4)若该社区有500户住户,根据以上信息估计全社区捐款不少于300元的户数是______.