题目内容
【题目】已知:如图,在Rt△ACB中,∠C=90°,BC=3cm,AC=3cm,点P由B点出发沿BA方向向点A匀速运动,速度为2cm/s;点Q由A点出发沿AC方向向点C匀速运动,速度为
cm/s;若设运动的时间为t(s)(0<t<3),解答下列问题:
(1)如图①,连接PC,当t为何值时△APC∽△ACB,并说明理由;
(2)如图②,当点P,Q运动时,是否存在某一时刻t,使得点P在线段QC的垂直平分线上,请说明理由;
(3)如图③,当点P,Q运动时,线段BC上是否存在一点G,使得四边形PQGB为菱形?若存在,试求出BG长;若不存在请说明理由.
【答案】(1)t=,理由见解析;(2)存在,t=1,理由见解析;(3)不存在,理由见解析.
【解析】
(1)结合直角三角形性质,由△APC∽△ACB,得;(2)过点P作PM⊥AC,根据线段垂直平分线性质,求QM,AM的表达式,证△APM∽△ABC,得
,
;(3)假设线段BC上是存在一点G,使得四边形PQGB为平行四边形,则PQ∥BG,PQ=BG,由△APQ∽△ABC,得
,
得BP=2t=3,故PQ≠BP.
(1)在Rt△ACB中,∠C=90°,AC=3cm,BC=3cm,
∴AB=6,
由运动知,BP=2t,AQ= ,
∴AP=6﹣2t,
∵△APC∽△ACB,
∴t= ;
(2)存在,
理由:如图②,由运动知,BP=2t,AQ=,
∴AP=6﹣2t,CQ= ,
∵点P是CQ的垂直平分线上,
过点P作PM⊥AC,
∴QM=CM=
∴AM=AQ+QM= =
(3+t)
∵∠ACB=90°,∴PM∥BC,
∴△APM∽△ABC
∴
∴解得t=1;
(3)不存在
理由:由运动知,BP=2t,,
∴AP=6﹣2t,
假设线段BC上是存在一点G,使得四边形PQGB为平行四边形,
∴PQ∥BG,PQ=BG,
∴△APQ∽△ABC,,
∴,
∴BP=2t=3,
∴PQ≠BP,
∴平行四边形PQGB不可能是菱形.即:线段BC上不存在一点G,使得四边形PQGB为菱形.
![](http://thumb.zyjl.cn/images/loading.gif)