题目内容
【题目】 如图,在矩形ABCD中,点N为边BC上不与B、C重合的一个动点,过点N作MN⊥BC交AD于点M,交BD于点E,以MN为对称轴折叠矩形ABNM,点A、B的对应点分别是G、F,连接EF、DF,若AB=6,BC=8,当△DEF为直角三角形时,CN的长为______.
【答案】或
【解析】
△DEF为直角三角形时,可能出现三种情况,分别令不同的内角为直角,画出相应的图形,根据折叠的性质和相似三角形的性质进行解答即可.
解:矩形ABCD中,AB=6,BC=8,
∴BD==10,
由折叠得:BE=EF,BN=NF,∠EBF=∠EFB,∠BEN=∠FEN,
当△DEF为直角三角形时,
(1)当∠DEF=90°,则∠BEN=∠FEN=45°,不合题意;
(2)当∠EFD=90°时,如图1所示:
∵∠EFN+∠DFC=90°,∠DFC+∠CDF=90°,
∴∠EFN=∠CDF=∠EBN,
∵tan∠DBC===tan∠CDF=
设CN=x,则BN=NF=8-x,FC=x-(8-x)=2x-8,
∴=
解得:x=,即CN=.
(3)当∠EDF=90°时,如图2所示:
易证△BDC∽△DFC,
∴CD2=BCCF
设CN=x,则BN=NF=8-x,FC=(8-x)-x=8-2x,
∴62=8(8-2x)
解得:x=,即CN=,
综上所述,CN的长为或.
故答案为:或.
【题目】某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
种类 | A | B | C | D | E | F |
上学方式 | 电动车 | 私家车 | 公共交通 | 自行车 | 步行 | 其他 |
某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图
根据以上信息,回答下列问题:
(1)参与本次问卷调查的学生共有____人,其中选择B类的人数有____人.
(2)在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图.
(3)若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数.