题目内容
【题目】阅读材料1:
对于两个正实数,由于,所以,即,所以得到,并且当时,
阅读材料2:
若,则 ,因为,,所以由阅读材料1可得:,即的最小值是2,只有时,即=1时取得最小值.
根据以上阅读材料,请回答以下问题:
(1)比较大小
(其中≥1); -2(其中<-1)
(2)已知代数式变形为,求常数的值
(3)当= 时,有最小值,最小值为 (直接写出答案).
【答案】(1);(2);(3)0,3.
【解析】
(1)根据求差法比较大小,由材料1可知将结果用配方法变形即可得出结论.
(2)根据材料(2)的方法,把代数式变形为,解答即可;
(3)先将变形为,由材料(2)可知时(即x=0,)有最小值.
解:(1),所以;
当时,由阅读材料1可得,,
所以;
(2)
,
所以;
(3)
∵x≥0,
∴
即:当时,有最小值,
∴当x=0时,有最小值为3.
练习册系列答案
相关题目