题目内容
【题目】已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).
(1)求证:方程总有两个实数根;
(2)若方程的两个实数根都是整数,求正整数m的值.
【答案】(1)见解析;(2)正整数m的值为1或2.
【解析】
试题分析:(1)先计算判别式的值得到△=(m+2)2﹣4m×2=(m﹣2)2,再根据非负数的值得到△≥0,然后根据判别式的意义得到方程总有两个实数根;
(2)利用因式分解法解方程得到x1=1,x2=,然后利用整数的整除性确定正整数m的值.
(1)证明:∵m≠0,
△=(m+2)2﹣4m×2
=m2﹣4m+4
=(m﹣2)2,
而(m﹣2)2≥0,即△≥0,
∴方程总有两个实数根;
(2)解:(x﹣1)(mx﹣2)=0,
x﹣1=0或mx﹣2=0,
∴x1=1,x2=,
当m为正整数1或2时,x2为整数,
即方程的两个实数根都是整数,
∴正整数m的值为1或2.
练习册系列答案
相关题目