题目内容
【题目】在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=2.
(1)试在图中画出将△ABC以B为旋转中心,沿顺时针方向旋转90°后的图形△A1BC1;
(2)若点B的坐标为(-1,-4),点C的坐标为(-3,-4),试在图中画出直角坐标系,并写出点A的坐标;
(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2.
【答案】(1)详见解析;(2)A(-3,-1);(3)详见解析.
【解析】
(1)利用网格特点和旋转的性质画图;
(2)利用点B、C的坐标画直角坐标系,然后写出A点坐标;
(3)利用关于原点对称的性质,根据网格结构找出点A、B、C的对应点的位置,然后顺次连接即可;.
解:(1)如图;
(2)如图可知, A(-3,-1);
(3)△A2 B2 C2如图.
练习册系列答案
相关题目
【题目】二次函数(,是常数)中,自变量与函数的对应值如下表:
-1 | 0 | 1 | 2 | 3 | |||||
1 | 2 | 1 | -2 |
(1)判断二次函数图象的开口方向,并写出它的顶点坐标;
(2)一元二次方程(,是常数)的两个根,的取值范围是下列选项中的哪一个 .
A. B.
C. D.