题目内容

【题目】如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为边作等腰直角三角形CDE,其中∠DCE=90°,连接BE.

(1)求证:△ACD≌△BCE;

(2)若AB=2cm,则BE=_______cm.

(3)BE与AD有何位置关系?请说明理由.

【答案】(1)证明见详解;(2)4;(3)BE⊥AD,理由见详解.

【解析】

(1)根据题意,通过SAS即可得证;

(2)由(1)可知BE=AD=2AB;

(3)根据对顶角相等可得∠DCE+∠BEC=∠EBD+∠ADC,由(1)可得∠BEC=∠ADC,则∠EBD=∠DCE=90°.

(1)证明:∵△CDE是等腰直角三角形,∠DCE=90°,

∴CD=CE,

∵∠ACB=90°,

∴∠ACB=∠DCE,

∴∠ACB+∠BCD=∠DCE+∠BCD,

∴∠ACD=∠BCE,

△ACD△BCE中,

∴△ACD≌△BCE(SAS);

(2)∵DB=AB,

∴AD=2AB=4cm,

由(1)得:△ACD≌△BCE,

∴BE=AD=4cm;

故答案为:4;

(3)BE⊥AD;理由如下:

根据对顶角相等得,∠DCE+∠BEC=∠EBD+∠ADC,

由(1)得:△ACD≌△BCE,

∴∠ADC=∠BEC,

∴∠EBD=∠DCE=90°,

∴BE⊥AD.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网