题目内容
【题目】如图,等边三角形ABC的边长是2,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接MN,则在点M运动过程中,线段MN长度的最小值是( )
A. B. 1 C. D.
【答案】B
【解析】
由旋转的特性以及∠MBN=60°,可知△BMN是等边三角形,从而得出MN=BN,再由点到直线的所有线段中,垂线段最短可得出结论.
由旋转的特性可知,BM=BN.
又∵∠MBN=60°,∴△BMN为等边三角形,∴MN=BM.
∵点M是高CH所在直线上的一个动点,∴当BM⊥CH时,MN最短(到直线的所有线段中,垂线段最短).
又∵△ABC为等边三角形,且AB=BC=CA=2,∴当点M和点H重合时,MN最短,且有MN=BM=BH=AB=1.
故选B.
练习册系列答案
相关题目