题目内容
【题目】如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值是( )
A. B. C. D.
【答案】C
【解析】
作DC关于AB的对称点D′C′,以BC中的O为圆心作半圆O,连D′O分别交AB及半圆O于P、G.将PD+PG转化为D′G找到最小值.
解:如图:
取点D关于直线AB的对称点D′.以BC中点O为圆心,OB为半径画半圆.
连接OD′交AB于点P,交半圆O于点G,连BG.连CG并延长交AB于点E.
由以上作图可知,BG⊥EC于G.
PD+PG=PD′+PG=D′G
由两点之间线段最短可知,当点D′,G,O三点共线时,PD+PG最小.
∵D′C′=4,OC′=6
∴D′O=
∴D′G=22
∴PD+PG的最小值为22
故选C.
练习册系列答案
相关题目