题目内容
【题目】如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB于点D,⊙O是△BED的外接圆.
(1)求证:AC是⊙O的切线;
(2)已知⊙O的半径为2.5,BE=4,求BC,AD的长.
【答案】(1)证明见解析;(2)BC=,AD=.
【解析】
(1)连接OE,由OB=OE知∠OBE=∠OEB、由BE平分∠ABC知∠OBE=∠CBE,据此得∠OEB=∠CBE,从而得出OE∥BC,进一步即可得证;
(2)证△BDE∽△BEC得,据此可求得BC的长度,再证△AOE∽△ABC得,据此可得AD的长.
(1)如图,连接OE,
∵OB=OE,
∴∠OBE=∠OEB,
∵BE平分∠ABC,
∴∠OBE=∠CBE,
∴∠OEB=∠CBE,
∴OE∥BC,
又∵∠C=90°,
∴∠AEO=90°,即OE⊥AC,
∴AC为⊙O的切线;
(2)∵ED⊥BE,
∴∠BED=∠C=90°,
又∵∠DBE=∠EBC,
∴△BDE∽△BEC,
∴,即,
∴BC=;
∵∠AEO=∠C=90°,∠A=∠A,
∴△AOE∽△ABC,
∴,即,
解得:AD=.
练习册系列答案
相关题目
【题目】时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1200名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种).调查结果统计如下:
球类名称 | 乒乓球 | 羽毛球 | 排球 | 篮球 | 足球 |
人数 | 42 | 15 | 33 |
解答下列问题:
(1)这次抽样调查中的样本是________;
(2)统计表中,________,________;
(3)试估计上述1200名学生中最喜欢乒乓球运动的人数.