题目内容

【题目】已知:△ABC,BC>AC,动点D△ABC的顶点A逆时针旋转,AD=BC,连接DC.AB,DC的中点E,F作直线,直线EF与直线AD,BC分别相交于点M,N.

(1)如图1,当点D旋转到BC的延长线上时,N恰好与点F重合,AC的中点H,连接HE,HF,根据三角形中位线定理和平行线的性质,可得∠AMF∠ENB有何数量关系?(不需证明).

(2)当点D旋转到图2或图3中的位置时,∠AMF∠ENB有何数量关系?请分别写出猜想,并任选一种情况证明.

【答案】(1)∠AMF=∠ENB;(2)∠AMF=∠ENB,∠AMF+∠ENB=180°,证明见解析.

【解析】

(1) AC的中点H,连接HE、HF,当点D旋转到图2中的位置时,由FDC的中点,EAB的中点,根据三角形中位线的性质得到FH∥AD,且FH=AD;HE∥BC,且HE=BC,得到∠HFE=∠AMF,∠HEF=∠ENB,HE=HF,则∠HEF=∠HFE,所以∠AMF=∠BNE;当点D旋转到图3中的位置时,同理可证得∠AMF=∠BNE.

(2) 与(1)相同都需要作出两条辅助线,两次运用中位线定理解答.

(1)1:AMF=ENB.

(2)2:AMF=ENB;

3:AMF+ENB=180°.

当点D旋转到图2中的位置时,

证明:如图,AC的中点H,

连接HE,HF.

FDC的中点,HAC的中点,

HFAD,HF=AD,

∴∠AMF=HFE,

同理,HECB,HE=CB,∴∠ENB=HEF.

AD=BC,HF=HE,∴∠HEF=HFE,

∴∠ENB=AMF.

当点D旋转到图3中的位置时,

用同样的方法可证明∠HFE=∠AME,∠HEF=∠BNE,
而∠HFE=∠HEF,
∴∠AME=∠BNE,
而∠AMF+∠AME=180°,
∴∠AMF+∠BNE=180°.
故答案为:∠AMF=∠BNE或∠AMF+∠BNE=180°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网