题目内容

【题目】如图,在△AOB中,OA=OB,∠AOB=50°,将△AOB绕O点顺时针旋转30°,得到△COD,OC交AB于点F,CD分别交AB、OB于点E、H.求证:EF=EH.

【答案】证明:∵OA=OB,∠AOB=50°, ∴∠A=∠B.
∵将△AOB绕O点顺时针旋转30°,得到△COD,
∴∠AOC=∠BOD=30°,OD=OB=OA,∠D=∠B.
在△AOF和△DOH中,

∴△AOF≌△DOH(ASA),
∴OF=OH,
∵OC=OB,
∴FC=BH.
在△FCE和△HBE中,

∴△FCE≌△HBE(AAS),
∴EF=EH.
【解析】根据等腰三角形的性质,可得∠A与∠B,根据旋转的性质,可得∠AOC=∠BOD=30°,OD=OB=OA,∠D=∠B,根据全等三角形的判定与性质,可得答案.
【考点精析】利用旋转的性质对题目进行判断即可得到答案,需要熟知①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.

练习册系列答案
相关题目

【题目】综合与探究

阅读材料:

数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题.例如,两个有理数在数轴上对应的点之间的距离可以用这两个数的差的绝对值表示;

在数轴上,有理数31对应的两点之间的距离为|3﹣1|=2;

在数轴上,有理数5与﹣2对应的两点之间的距离为|5﹣(﹣2)|=7;

在数轴上,有理数﹣23对应的两点之间的距离为|﹣2﹣3|=5;

在数轴上,有理数﹣8与﹣5对应的两点之间的距离为|﹣8﹣(﹣5)|=3;……

如图1,在数轴上有理数a对应的点为点A,有理数b对应的点为点B,A,B两点之间的距离表示为|a﹣b||b﹣a|,记为|AB|=|a﹣b|=|b﹣a|.

解决问题:

(1)数轴上有理数﹣10与﹣5对应的两点之间的距离等于   ;数轴上有理数x与﹣5对应的两点之间的距离用含x的式子表示为   ;若数轴上有理数x与﹣1对应的两点A,B之间的距离|AB|=2,则x等于   

联系拓广:

(2)如图2,点M,N,P是数轴上的三点,点M表示的数为4,点N表示的数为﹣2,动点P表示的数为x.

请从A,B两题中任选一题作答,我选择   题.

A.①若点P在点M,N两点之间,则|PM|+|PN|=   

②若|PM|=2|PN|,即点P到点M的距离等于点P到点N的距离的2倍,则x等于   

B.①若点P在点M,N之间,则|x+2|+|x﹣4|=   

|x+2|+|x﹣4|═10,则x=   

②根据阅读材料及上述各题的解答方法,|x+2|+|x|+|x﹣2|+|x﹣4|的最小值等于   

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网