题目内容

【题目】探索三角形的内角与外角平分线(三角形的外角是三角形的一边与另一边的延长线所组成的角):

(1)如图,在ABC中,BO平分ABCCO平分ACB,若A=50°,则BOC=________;此时ABOC有怎样的关系?试说明理由.

(2)如图②,BO平分ABCCO平分ACE,若A=50°,则BOC=________;此时∠ABOC有怎样的关系?试说明理由.

(3)如图③,△ABC的外角CBE,∠BCF的平分线BOCO相交于点O,若A=50°,BOC=______;此时ABOC有怎样的关系?(不需说明理由)

【答案】(1)115°,∠BOC=90°+∠A,.理由见解析;(2)25°,∠BOC=∠A,理由见解析;(3)65°,∠BOC=90°-∠A.

【解析】

(1)根据三角形内角和定理得到∠BOC=180°-OBC-OCB,则2BOC=360°-2OBC-2OCB,再根据角平分线的定义得∠ABC=2OBC,ACB=2OCB,则2BOC=360°-ABC-ACB,易得∠BOC=90°+A.

(2)根据角平分线的定义得∠ACE=2OCE,ABC=2OBC,由三角形外角的性质有∠OCE=BOC+OBC,ACE=ABC+A,则2BOC+2OBC=ABC+A,即可得到∠BOC=A;

(3)根据三角形内角和定理和外角性质可得到∠BOC=90°-A.

(1)115° ∠BOC=90°+∠A.理由如下:

∵∠BOC=180°-∠OBC-∠OCB,

∴2∠BOC=360°-2∠OBC-2∠OCB.

BO平分∠ABC,CO平分∠ACB,

∴∠ABC=2∠OBC,∠ACB=2∠OCB,

∴2∠BOC=360°-(∠ABC+∠ACB).

∵∠ABC+∠ACB=180°-∠A,

∴2∠BOC=180°+∠A,

∴∠BOC=90°+∠A.

(2)25° ∠BOC=∠A.理由如下:

∵CO平分∠ACE,

∴∠ACE=2∠OCE.

∵∠OCE=∠OBC+∠BOC,

∠ACE=∠ABC+∠A,

∴∠ABC+∠A=2∠OBC+2∠BOC.

∵BO平分∠ABC,∴∠ABC=2∠OBC,

∴2∠OBC+∠A=2∠OBC+2∠BOC,

∴∠A=2∠BOC,即∠BOC=∠A.

(3)65° ∠BOC=90°-∠A.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网