题目内容
【题目】如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.
(1)判断直线BC与⊙O的位置关系,并说明理由;
(2)若AC=3,∠B=30°.
①求⊙O的半径;
②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)
【答案】
(1)解:直线BC与⊙O相切;
连结OD,
∵OA=OD,
∴∠OAD=∠ODA,
∵∠BAC的角平分线AD交BC边于D,
∴∠CAD=∠OAD,
∴∠CAD=∠ODA,
∴OD∥AC,
∴∠ODB=∠C=90°,
即OD⊥BC.
又∵直线BC过半径OD的外端,
∴直线BC与⊙O相切
(2)解:①设OA=OD=r,在Rt△BDO中,∠B=30°,
∴OB=2r,
在Rt△ACB中,∠B=30°,
∴AB=2AC=6,
∴3r=6,解得r=2.
②在Rt△ACB中,∠B=30°,
∴∠BOD=60°.
∴ .
∵∠B=30°,OD⊥BC,
∴OB=2OD,
∴AB=3OD,
∵AB=2AC=6,
∴OD=2,BD=2
S△BOD= ×ODBD=2 ,
∴所求图形面积为 .
【解析】(1)连接OD,首先依据平行线的性质、角平分线的定义可得到∠CAD=∠ODA,从而可证明OD∥AC,然后依据平行线的性质可证明OD⊥BC,最后,再根据切线的判定定理进行证明即可;
(2)①根据30°角所对的直角边等于斜边的一半可得到OB=2OD=2r,AB=2AC=3r,从而求得半径r的值;②由S阴影=S△BOD-S扇形DOE求解即可.
【考点精析】本题主要考查了切线的判定定理和扇形面积计算公式的相关知识点,需要掌握切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线;在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2)才能正确解答此题.
【题目】某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表
身高分组 | 频数 | 频率 |
152≤ x<155 | 3 | 0.06 |
155≤ x<158 | 7 | 0.14 |
158≤ x<161 | m | 0.28 |
161≤ x<164 | 13 | n |
164≤ x<167 | 9 | 0.18 |
167≤ x<170 | 3 | 0.06 |
170≤ x<173 | 1 | 0.02 |
根据以上统计图表完成下列问题:
(1)统计表中m=____,n=____;并将频数分布直方图补充完整;
(2)在这次测量中两班男生身高的中位数在什么范围内?