题目内容

平行四边形一边长为10,一条对角线长为6,则它的另一条对角线长b的取值范围为    .  
14<b<26
由平行四边形的对角线互相平分,根据三角形三边之间的关系,可先求得另一对角线的一半的取值范围,进而可求出这条对角线的范围.
解:如图,已知平行四边形中,AB=10,AC=6,

由题意得,BD=2OB,AC=2OA=6,
∴OB=1/2BD,OA=3,
∴在△AOB中,AB-OA<OB<AB+OA,可得7<OB<13,
即:14<BD<26,
故答案为:14<x<26.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网