题目内容
【题目】完成下列证明
如图,点D,E,F分别在AB,BC,AC上,且DE//AC,EF//AB
求证:∠A+∠B+∠C=180°
证明:∵DE//AC,
∴∠1=________,∠4=________( )
又∵EF//AB,
∴∠3=________( )
∠2=________( )
∴∠2=∠A( )
又∵∠1+∠2+∠3=180°(平角定义)
∴∠A+∠B+∠C=180°
【答案】详见解析
【解析】
根据两直线平行,同位角相等可得∠1=∠C,∠A=∠4,∠3=∠B,两直线平行,内错角相等可得∠4=∠2,然后等量代换整理即可得证.
证明:∵,
∴,(两直线平行,同位角相等)
又∵,
∴(两直线平行,同位角相等)
(两直线平行,内错角相等)
∴(等量代换)
又∵(平角定义)
∴
练习册系列答案
相关题目
【题目】某校为更好的开展“冬季趣味运动会”活动,随机在各年级抽查了部分学生,了解他们最喜爱的趣味运动项目类型(跳长绳、踢毽子、背夹球、拔河共四类),并将统计结果绘制成如图不完整的频数分布表.
根据以上信息回答下列问题:
最喜爱的趣味运动项目类型频数分布表:
项目类型 | 频数 | 频率 |
跳长绳 | 25 | a |
踢毽子 | 20 | 0.2 |
背夹球 | b | 0.4 |
拔河 | 15 | 0.15 |
(1)直接写出a= , b=;
(2)利用频数分布表中的数据,在图中绘制扇形统计图(注明项目、百分比、圆心角);
(3)若全校共有学生1200名,估计该校最喜爱背夹球和拔河的学生大约有多少人?