题目内容

【题目】如图,四边形ABCD中,AC、BD是它的对角线,∠ABC=∠ADC=90°,∠BCD是锐角.

(1)写出这个四边形的一条性质并证明你的结论.
(2)若BD=BC,证明:
(3)①若AB=BC=4,AD+DC=6,求 的值.
②若BD=CD,AB=6,BC=8,求sin∠BCD的值.

【答案】
(1)

解:结论:AB2+BC2=AD2+DC2

理由:∵∠ABC=∠ADC=90°,

∴AB2+BC2=AC2,BC2+DC2=AC2

∴AB2+BC2=AD2+DC2


(2)

解:如图1中,过点B作AD的垂线BE交DA的延长线于点E,

∵∠ABC=∠ADC=90°,

∴∠ADC+∠ABC=180°,

∴四边形ABCD四点共圆,

∴∠BDE=∠ACB,∠EAB=∠BCD,

∵∠BED=∠ABC=90°,

∴△BED∽△ABC,

= =sin∠EAB=sin∠BCD


(3)

解:①如图2中,过点B作BF⊥BD交DC的延长线于F.

∵∠ABC=∠DBF=90°,∠BAD+∠BCD+∠ABC+∠ADC=360°,∠ABC+∠ADC=180°,

∴∠BAD=180°﹣∠BCD=∠BCF,

∵∠BCF=∠BAD,BC=BA,

∴△DAB≌△CBF,

∴BD=BF,AD=CF,

∵∠DBF=90°,

∴△BDF是等腰直角三角形,

∴BD= DF,

∵AD+CD=6,

∴CF+CD=DF=6,

∴BD=3 ,AC= =4

= =

②当BD=CD时,如图3中,过点B作MN∥DC,过点C作CN⊥MN,垂足为NM延长BA交MN于点N,则四边形DCNM是矩形,△ABM∽△BCN,

,设AM=6y,BN=8y,BM=6x,CN=8x,

在Rt△BDM中,BD= =10x,

∵BD=DC,

∴10x=6x+8y,

∴x=2y,

在Rt△DABM中,AB= =6 y,

∴sin∠BCD=sin∠MAB= = =


【解析】(1)结论:AB2+BC2=AD2+DC2 , 根据勾股定理即可证明.(2)如图1中,过点B作AD的垂线BE交DA的延长线于点E,只要证明△BED∽△ABC,即可解决问题.(3)①如图2中,过点B作BF⊥BD交DC的延长线于F.只要证明△DAB≌△CBF,推出DF=AD+CD=6,求出BD、AC即可.
②当BD=CD时,如图3中,过点B作MN∥DC,过点C作CN⊥MN,垂足为NM延长BA交MN于点N,则四边形DCNM是矩形,△ABM∽△BCN,所以 ,设AM=6y,BN=8y,BM=6x,CN=8x,通过BD=DC,列出方程求出x、y的关系,求出AB,即可解决问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网