题目内容
【题目】阅读理解题
阅读材料:
两个两位数相乘,如果这两个因数的十位数字相同,个位数字的和是10,该类乘法的速算方法是:将一个因数的十位数字与另一个因数的十位数字加1的和相乘,所得的积作为计算结果的前两位,将两个因数的个位数字之积作为计算结果的后两位(数位不足两位,用0补齐)。
比如,它们乘积的前两位是,它们乘积的后两位是,所以;
再如,它们乘积的前两位是,它们乘积的后两位是,所以;
又如,,不足两位,就将6写在百位:,不足两位,就将9写在个位,十位上写0,所以
该速算方法可以用我们所学的整式乘法与分解因式的知识说明其合理性;
设其中一个因数的十位数字为,个位数字是,(、表示1~9的整数),则该数可表示为,另一因数可表示为.
两数相乘可得:
.
(注:其中表示计算结果的前两位,表示计算结果的后两位。)
问题:
两个两位数相乘,如果其中一个因数的十位数字与个位数字相同,另一因数的十位数字与个位数字之和是10.
如、、等.
(1)探索该类乘法的速算方法,请以为例写出你的计算步骤;
(2)设十位数字与个位数字相同的因数的十位数字是,则该数可以表示为___________.
设另一个因数的十位数字是,则该数可以表示为___________.(、表示1~9的正整数)
(3)请针对问题(1)(2)中的计算,模仿阅读材料中所用的方法写出如:的运算式:____________________
【答案】(1)4×(7+1)=32,4×3=12,44×73=3212;(2)11a,9b+10;(3)( 10a+a) ( 10b+c)= ( b+1 ) a×100+ac.
【解析】
(1)设一个因数的两个数字为b和c且b+c=10,另一个因数个位数为a,则另一个因数为10a+a,则 可得出( 10a+a) ( 10b+c)= ( b+1 ) a×100+ac.
规律:先将和为10的数的十位数字加1 ,再与后一个乘数的十位数字相乘后乘以100,然后加上两个个位数之积,由此可得出结论;
(2)根据两位数的表示方法即可得出结论.
(3)根据(1)即可得出结论.
(1)设一个因数的两个数字为b和c且b+c=10,另一个因数个位数为a,则另一个因数为10a+a,则( 10a+a) ( 10b+c)=100ab+10ac+10ab+ac=100ab+10(b+c)a+ac=100ab+10×10a+ac=( b+1 ) a×100+ac.
规律:先将和为10的数的十位数字加1 ,再与后一个乘数的十位数字相乘后乘以100,然后加上两个个位数之积,∴4×(7+1)=32,4×3=12,44×73=3212;
(2)设十位数字与个位数字相同的因数的十位数字是a,则该数可以表示为10a+a=11a.
设另一个因数的十位数字是b,则该数可以表示为10b+(10-b)=9b+10.
故答案为:11a,9b+10.
(3)设一个因数的两个数字为b和c且b+c=10,另一个因数个位数为a,则另一个因数为10a+a,则( 10a+a) ( 10b+c)=100ab+10ac+10ab+ac=100ab+10(b+c)a+ac=100ab+10×10a+ac=( b+1 ) a×100+ac.
故答案为:( 10a+a) ( 10b+c)= ( b+1 ) a×100+ac.