题目内容

【题目】(本题满分7分)已知关于x的方程有两个不相等的实数根.

(1)求k的取值范围;

(2)是否存在实数k,使此方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由.

【答案】(1),且;(2)不存在,理由见试题解析.

【解析】

试题(1)根据方程有两个不相等的实数根可知=,求得k的取值范围;

(2)可假设存在实数k,使得方程的两个实数根的倒数和为0,列出方程即可求得k的值,然后把求得的k值代入原式中看看与已知是否矛盾,如果矛盾则不存在,如果不矛盾则存在.

试题解析:(1)方程有两个不相等的实数根,

∴△=,且,解得,且,即k的取值范围是,且

(2)假设存在实数k,使得方程的两个实数根的倒数和为0,则不为0,且,即,且,解得,而与方程有两个不相等实根的条件,且矛盾,故使方程的两个实数根的倒数和为0的实数k不存在.

练习册系列答案
相关题目

【题目】阅读理解题

阅读材料:

两个两位数相乘,如果这两个因数的十位数字相同,个位数字的和是10,该类乘法的速算方法是:将一个因数的十位数字与另一个因数的十位数字加1的和相乘,所得的积作为计算结果的前两位,将两个因数的个位数字之积作为计算结果的后两位(数位不足两位,用0补齐)。

比如,它们乘积的前两位是,它们乘积的后两位是,所以

再如,它们乘积的前两位是,它们乘积的后两位是,所以

又如,不足两位,就将6写在百位:,不足两位,就将9写在个位,十位上写0,所以

该速算方法可以用我们所学的整式乘法与分解因式的知识说明其合理性;

设其中一个因数的十位数字为,个位数字是,(表示1~9的整数),则该数可表示为,另一因数可表示为

两数相乘可得:

.

(注:其中表示计算结果的前两位,表示计算结果的后两位。)

问题:

两个两位数相乘,如果其中一个因数的十位数字与个位数字相同,另一因数的十位数字与个位数字之和是10

等.

1)探索该类乘法的速算方法,请以为例写出你的计算步骤;

2)设十位数字与个位数字相同的因数的十位数字是,则该数可以表示为___________

设另一个因数的十位数字是,则该数可以表示为___________.(表示1~9的正整数)

3)请针对问题(1)(2)中的计算,模仿阅读材料中所用的方法写出如:的运算式:____________________

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网