题目内容
【题目】如图,ABCD是一张边长为4cm的正方形纸片,E,F分别为AB,CD的中点,沿过点D的折痕将A角翻折,使得点A落在EF上的点A′处折痕交AE于点G,则∠ADG=____°EG=___cm .
【答案】15
【解析】
由ABCD是一张边长为4cm的正方形纸片,E,F分别为AB,CD的中点,可得AE=DF=2cm,EF=AD=4cm,由翻折可得AG=A′G,AD=A′D,在Rt△DF中,利用勾股定理可求得答案.求得,在Rt△DF中利用正切值即可求得度数,进而求得∠ADG度数;在Rt△EG中,设EG=x,则G=AG=2x,利用勾股定理即可求得x值.
∵ABCD是一张边长为4cm的正方形纸片,E、F分别为AB,CD的中点,
∴AE=DF=2cm,EF=AD=4cm,
DG为折痕,
∴AG=G,AD=D,
Rt△DF中,
∴
∴∠ADG=∠DG=
∴
Rt△EG中,设EG=x,则G=AG=2x,
∴x=
解得x=
故答案为:15°,
练习册系列答案
相关题目
【题目】为了迎接“十一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:
运动鞋 | 甲 | 乙 |
进价(元/双) | m | m﹣20 |
售价(元/双) | 240 | 160 |
已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.
(1)求m的值;
(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?
(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?