题目内容
△ABC中,AB=AC,点D为射线BC上一个动点(不与B、C重合),以AD为一边向AD的左侧作△ADE,使AD=AE,∠DAE=∠BAC,过点E作BC的平行线,交直线AB于点F,连接BE.
(1)如图1,若∠BAC=∠DAE=60°,则△BEF是______三角形;
(2)若∠BAC=∠DAE≠60°
①如图2,当点D在线段BC上移动,判断△BEF的形状并证明;
②当点D在线段BC的延长线上移动,△BEF是什么三角形?请直接写出结论并画出相应的图形.
(1)如图1,若∠BAC=∠DAE=60°,则△BEF是______三角形;
(2)若∠BAC=∠DAE≠60°
①如图2,当点D在线段BC上移动,判断△BEF的形状并证明;
②当点D在线段BC的延长线上移动,△BEF是什么三角形?请直接写出结论并画出相应的图形.
(1)∵AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴△AED和△ABC为等边三角形,
∴∠C=∠ABC=60°,∠EAB=∠DAC,
∴△EAB≌△DAC,
∴∠EBA=∠C=60°,
∵EF∥BC,
∴∠EFB=∠ABC=60°,
∵在△EFB中,∠EFB=∠EBA=60°,
∴△EFB为等边三角形,
(2)①△BEF为等腰三角形,
∵AB=AC,AD=AE,∠BAC=∠DAE,
∴△AED和△ABC为等腰三角形,
∴∠C=∠ABC,∠EAB=∠DAC,
∴△EAB≌△DAC,
∴∠EBA=∠C,
∵EF∥BC,
∴∠EFB=∠ABC,
∵在△EFB中,∠EFB=∠EBA,
∴△EFB为等腰三角形,
②AB=AC,点D为射线BC上一个动点(不与B、C重合),以AD为一边向AD的左侧作△ADE,使AD=AE,∠DAE=∠BAC,过点E作BC的平行线,交直线AB于点F,连接BE.
∵△BEF为等腰三角形,
∵AB=AC,AD=AE,∠BAC=∠DAE,
∴△AED和△ABC为等腰三角形,
∴∠ACB=∠ABC,∠EAB=∠DAC,
∴△EAB≌△DAC,
∴∠EBA=∠ACD,
∴∠EBF=∠ACB,
∵EF∥BC,
∴∠AFE=∠ABC,
∵∠ABC=∠ACB,
∴∠AFE=∠ACB,
∵在△EFB中,∠EBF=∠AFE,
∴△EFB为等腰三角形.
∴△AED和△ABC为等边三角形,
∴∠C=∠ABC=60°,∠EAB=∠DAC,
∴△EAB≌△DAC,
∴∠EBA=∠C=60°,
∵EF∥BC,
∴∠EFB=∠ABC=60°,
∵在△EFB中,∠EFB=∠EBA=60°,
∴△EFB为等边三角形,
(2)①△BEF为等腰三角形,
∵AB=AC,AD=AE,∠BAC=∠DAE,
∴△AED和△ABC为等腰三角形,
∴∠C=∠ABC,∠EAB=∠DAC,
∴△EAB≌△DAC,
∴∠EBA=∠C,
∵EF∥BC,
∴∠EFB=∠ABC,
∵在△EFB中,∠EFB=∠EBA,
∴△EFB为等腰三角形,
②AB=AC,点D为射线BC上一个动点(不与B、C重合),以AD为一边向AD的左侧作△ADE,使AD=AE,∠DAE=∠BAC,过点E作BC的平行线,交直线AB于点F,连接BE.
∵△BEF为等腰三角形,
∵AB=AC,AD=AE,∠BAC=∠DAE,
∴△AED和△ABC为等腰三角形,
∴∠ACB=∠ABC,∠EAB=∠DAC,
∴△EAB≌△DAC,
∴∠EBA=∠ACD,
∴∠EBF=∠ACB,
∵EF∥BC,
∴∠AFE=∠ABC,
∵∠ABC=∠ACB,
∴∠AFE=∠ACB,
∵在△EFB中,∠EBF=∠AFE,
∴△EFB为等腰三角形.
练习册系列答案
相关题目