题目内容

【题目】如图1,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD、BC分别交于点E、F,点O是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.

(1)求证:①△DOK≌△BOG;②AB+AK=BG;
(2)若KD=KG,BC=4﹣
①求KD的长度;
②如图2,点P是线段KD上的动点(不与点D、K重合),PM∥DG交KG于点M,PN∥KG交DG于点N,设PD=m,当SPMN= 时,求m的值.

【答案】
(1)

证明:①∵在矩形ABCD中,AD∥BC

∴∠KDO=∠GBO,∠DKO=∠BGO

∵点O是BD的中点

∴DO=BO

∴△DOK≌△BOG(AAS)

②∵四边形ABCD是矩形

∴∠BAD=∠ABC=90°,AD∥BC

又∵AF平分∠BAD

∴∠BAF=∠BFA=45°

∴AB=BF

∵OK∥AF,AK∥FG

∴四边形AFGK是平行四边形

∴AK=FG

∵BG=BF+FG

∴BG=AB+AK


(2)

解:①由(1)得,四边形AFGK是平行四边形

∴AK=FG,AF=KG

又∵△DOK≌△BOG,且KD=KG

∴AF=KG=KD=BG

设AB=a,则AF=KG=KD=BG= a

∴AK=4﹣ a,FG=BG﹣BF= a﹣a

∴4﹣ a= a﹣a

解得a=

∴KD= a=2

②过点G作GI⊥KD于点I

由(2)①可知KD=AF=2

∴GI=AB=

∴SDKG= ×2× =

∵PD=m

∴PK=2﹣m

∵PM∥DG,PN∥KG

∴四边形PMGN是平行四边形,△DKG∽△PKM∽△DPN

,即SDPN=( 2

同理SPKM=( 2

∵SPMN=

∴S平行四边形PMGN=2SPMN=2×

又∵S平行四边形PMGN=SDKG﹣SDPN﹣SPKM

∴2× = ﹣( 2 ﹣( 2 ,即m2﹣2m+1=0

解得m1=m2=1

∴当SPMN= 时,m的值为1


【解析】(1)①先根据AAS判定△DOK≌△BOG,②再根据等腰三角形ABF和平行四边形AFKG的性质,得出结论BG=AB+AK;(2)①先根据等量代换得出AF=KG=KD=BG,再设AB=a,根据AK=FG列出关于a的方程,求得a的值,进而计算KD的长;②先过点G作GI⊥KD,求得SDKG的值,再根据四边形PMGN是平行四边形,以及△DKG∽△PKM∽△DPN,求得SDPN和SPKM的表达式,最后根据等量关系S平行四边形PMGN=SDKG﹣SDPN﹣SPKM , 列出关于m的方程,求得m的值即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网