题目内容

【题目】如图是二次函数y=ax2+bx+c的图象,下列结论: ①二次三项式ax2+bx+c的最大值为4;
②4a+2b+c<0;
③一元二次方程ax2+bx+c=1的两根之和为﹣1;
④使y≤3成立的x的取值范围是x≥0.
其中正确的个数有(

A.1个
B.2个
C.3个
D.4个

【答案】B
【解析】解:∵抛物线的顶点坐标为(﹣1,4),∴二次三项式ax2+bx+c的最大值为4,①正确; ∵x=2时,y<0,∴4a+2b+c<0,②正确;
根据抛物线的对称性可知,一元二次方程ax2+bx+c=1的两根之和为﹣2,③错误;
使y≤3成立的x的取值范围是x≥0或x≤﹣2,④错误,
故选:B.
①根据抛物线的顶点坐标确定二次三项式ax2+bx+c的最大值;②根据x=2时,y<0确定4a+2b+c的符号;③根据抛物线的对称性确定一元二次方程ax2+bx+c=1的两根之和;④根据函数图象确定使y≤3成立的x的取值范围.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网