题目内容
【题目】如图,O为Rt△ABC斜边中点,AB=10,BC=6,M,N在AC边上,∠MON=∠B,若△OMN与△OBC相似,则CM=_____.
【答案】或
【解析】
分两种情形分别求解:①如图1中,当∠MON=∠OMN时.②如图2中,当∠MON=∠ONM时.
解:∵∠ACB=90°,AO=OB,
∴OC=OA=OB,
∴∠B=∠OCB,
∵∠MON=∠B,若△OMN与△OBC相似,
∴有两种情形:①如图1中,当∠MON=∠OMN时,
∵∠OMN=∠B,∠OMC+∠OMN=180°,
∴∠OMC+∠B=180°,
∴∠MOB+∠BCM=90°,
∴∠MOB=90°,
∵∠AOM=∠ACB,∠A=∠A,
∴△AOM∽△ACB,
∴=,
∴=,
∴AM=,
∴CM=AC-AM=8-=.
②如图2中,当∠MON=∠ONM时,
∵∠BOC=∠OMN,
∴∠A+∠ACO=∠ACO+∠MOC,
∴∠MOC=∠A,
∵∠MCO=∠ACO,
∴△OCM∽△ACO,
∴OC2=CMCA,
∴25=CM8,
∴CM=,
故答案为:或.
【题目】数学综合实践课上,老师提出问题:如图,有一张长为4dm,宽为3dm的长方形纸板,在纸板四个角剪去四个相同的小正方形,然后把四边折起来(实线为剪裁线,虚线为折叠线),做成一个无盖的长方体盒子,问小正方形的边长为多少时,盒子的体积最大?为了解决这个问题,小明同学根据学习函数的经验,进行了如下的探究:
(1)设小正方形的边长为xdm,长方体体积为ydm3,根据长方体的体积公式,可以得到y与x的函数关系式是 ,其中自变量x的取值范围是 .
(2)列出y与x的几组对应值如下表:
x/dm | … | 1 | … | |||||||||
y/dm3 | … | 1.3 | 2.2 | 2.7 | 3.0 | 2.8 | 2.5 | 1.5 | 0.9 | … |
(注:补全表格,保留1位小数点)
(3)如图,请在平面直角坐标系中描出以补全后表格中各对对应值为坐标的点,画出该函数图象;
(4)结合函数图象回答:当小正方形的边长约为 dm时,无盖长方体盒子的体积最大,最大值约为 .