题目内容

如图,Rt△ABC中,∠ACB=90°,∠A=30°,D为AB的延长线上一点,且AB:BD=4:1,则tan∠BDC=______.
过C作CE⊥AD,交AD于点E,可得∠CEB=90°,
∵Rt△ABC中,∠ACB=90°,∠A=30°,
∴∠ABC=60°,BC=
1
2
AB,
由AB:BD=4:1,设BD=x,AB=4x,则AD=BD+AB=5x,BC=2x,
在Rt△CEB中,∠ECB=30°,
可得EB=
1
2
BC=x,即ED=EB+BD=x+x=2x,
根据勾股定理得:EC=
BC2-EB2
=
3
x,
在Rt△CED中,tan∠BDC=
EC
ED
=
3
x
2x
=
3
2

故答案为:
3
2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网