题目内容
【题目】在ABCD中,SABCD=24,AE平分∠BAC,交BC于E,沿AE将△ABE折叠,点B的对应点为F,连接EF并延长交AD于G,EG将ABCD分为面积相等的两部分.则S△ABE= .
【答案】4
【解析】解:根据题意,AE平分∠BAC,交BC于E,沿AE将△ABE折叠,点B的对应点为F, ∴点F在对角线AC上,且S△ABE=S△AFE .
∵EG将ABCD分为面积相等的两部分,
∴点F为对角线AC的中点.
∴S△AFE=S△CFE(等底同高).
∵S平行四边形ABCD=24,
∴S△ABE=S△AFE=S△CFE= S△ABC= S平行四边形ABCD=4.
故答案是:4.
【考点精析】通过灵活运用平行四边形的性质和翻折变换(折叠问题),掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等即可以解答此题.
练习册系列答案
相关题目