题目内容

【题目】ABCD中,SABCD=24,AE平分∠BAC,交BC于E,沿AE将△ABE折叠,点B的对应点为F,连接EF并延长交AD于G,EG将ABCD分为面积相等的两部分.则SABE=

【答案】4
【解析】解:根据题意,AE平分∠BAC,交BC于E,沿AE将△ABE折叠,点B的对应点为F, ∴点F在对角线AC上,且SABE=SAFE
∵EG将ABCD分为面积相等的两部分,
∴点F为对角线AC的中点.
∴SAFE=SCFE(等底同高).
∵S平行四边形ABCD=24,
∴SABE=SAFE=SCFE= SABC= S平行四边形ABCD=4.
故答案是:4.

【考点精析】通过灵活运用平行四边形的性质和翻折变换(折叠问题),掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网