题目内容
【题目】如图,一次函数y=﹣2x+4与x轴,y轴分别交于A,B,以线段AB为直角边在第一象限内作Rr△ABC,使AB=AC.
(1)点A的坐标是 ,点B的坐标是 ;
(2)求直线AC的函数关系式;
(3)若P(m,3)在第二象限内,求当△PAB与△ABC面积相等时m的值.
【答案】(1)(2,0),(0,4);(2)直线AC的解析式为:y=x-1;(3)m=-.
【解析】
(1)令x=0和y=0分别代入y=-2x+4中即可求出A与B的坐标.
(2)过点C作CD⊥x轴于点D,利用△ABO≌△CAD,求出点C的坐标,最后利用待定系数法求出AC的解析式.
(3)过点P作PE⊥x轴于点E,利用勾股定理即可求出AB=AC=2,利用S△APB=SOAB+S△OPB-S△OPA列出方程求出m的值.
(1)令x=0代入y=-2x+4中
∴y=4,
∴B(0,4)
令y=0代入y=-2x+4中
∴x=2,
∴A(2,0)
(2)过点C作CD⊥x轴于点D,
∵∠BAC=90°,
∴∠DAC+∠BAO=∠ABO+∠BAO=90°,
∴∠ABO=∠DAC,
在△ABO与△CAD中,
∴△ABO≌△CAD(AAS)
∴CD=OA=2,AD=OB=4,
∴OD=6,
∴C(6,2)
设直线AC的解析式为y=kx+b
∴
∴解得:
∴直线AC的解析式为:y=x-1
(3)过点P作PE⊥x轴于点E,
∴PE=3,OE=-m
∵AB=AC=2
∴S△ABC=ACAB=×2×2=10
∴S△APB=SOAB+S△OPB-S△OPA
=AOBO+OBOE-OAPE
=1-2m
∴1-2m=10
∴m=-.
练习册系列答案
相关题目