题目内容

【题目】在△ABC中,AB=AC,以AB为直径的⊙O分别交边BC、AC于点D、点E,且AE=BE.
(1)如图①,求∠EBC的度数;
(2)如图②,过点D作⊙O的切线交AB的延长线于点G,交AC于点F,若⊙O的直径为10,求BG的长.

【答案】
(1)解:∵AB为⊙O的直径,

∴∠AEB=90°,

∵AE=BE,

∴∠A=∠ABE= =45°,

∵AB=AC,

=67.5°,

∴∠EBC=∠ABC﹣∠ABE=22.5°


(2)解:连接OD,AD,∵FG是⊙O的切线,

∴GF⊥OD,

∴∠ODG=90°,

∵AB为⊙O的直径,

∴∠ADB=90°,

∴AD⊥BC,

∵AB=AC,

∴BD=DC,

∵OA=OB,

∴OD是△ABC的中位线,

∴OD∥AC,

∴∠GOD=∠BAC=45°,

∵cos∠GOD=

∵⊙O的直径为10,

∴OB=OD=5,

∴OG=5

∴BG=5 ﹣5.


【解析】(1)由AB为⊙O的直径,得到∠AEB=90°,根据等腰三角形的性质和三角形的内角和即可得到结论;(2)连接OD,AD,由FG是⊙O的切线,得到∠ODG=90°,根据三角形的中位线的性质得到OD∥AC,于是得到∠GOD=∠BAC=45°,于是得到结论.
【考点精析】解答此题的关键在于理解等腰三角形的性质的相关知识,掌握等腰三角形的两个底角相等(简称:等边对等角),以及对切线的性质定理的理解,了解切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网