题目内容
【题目】如图,已知P点是∠AOB平分线上一点,PC⊥OA,PD⊥OB,垂足为C、D.
(1)求证:∠PCD=∠PDC;
(2)求证:OP是线段CD的垂直平分线.
【答案】(1)证明见解析;(2)证明见解析.
【解析】试题分析:(1)由角平分线的性质可得PC=PD,即可证明∠PCD=∠PDC;(2)先证明△OCP≌△ODP,由此可得OC=OD,进而证明点O在CD的垂直平分线上,由(1)PC=PD可得点P也在CD的垂直平分线上,所以OP是线段CD的垂直平分线.
试题解析:
(1)∵OP是∠AOB的角平分线,PC⊥OA,PD⊥OB,
∴PC=PD,
∴∠PCD=∠PDC;
(2)∵OP是∠AOB的角平分线,
∴∠COP=∠DOP,
∵PC⊥OA,PD⊥OB,
∴∠OCP=∠ODP=90°,
在△OCP和△ODP中,
,
∴△OCP≌△ODP(AAS),
∴OC=OD,
∴点O在CD的垂直平分线上,
∵PC=PD,
∴点P在CD的垂直平分线上,
∴OP是CD的垂直平分线.
练习册系列答案
相关题目