题目内容
【题目】如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?
【答案】20千米
【解析】试题分析:由勾股定理两直角边的平方和等于斜边的平方即可求,即在直角三角形DAE和直角三角形CBE中利用斜边相等两次利用勾股定理得到AD2+AE2=BE2+BC2,设AE为x,则BE=10﹣x,将DA=8,CB=2代入关系式即可求得.
解:设基地E应建在离A站x千米的地方.
则BE=(50﹣x)千米
在Rt△ADE中,根据勾股定理得:AD2+AE2=DE2
∴302+x2=DE2…(3分)
在Rt△CBE中,根据勾股定理得:CB2+BE2=CE2
∴202+(50﹣x)2=CE2
又∵C、D两村到E点的距离相等.
∴DE=CE∴DE2=CE2
∴302+x2=202+(50﹣x)2
解得x=20
∴基地E应建在离A站多少20千米的地方.
练习册系列答案
相关题目
【题目】某运动队欲从甲、乙两名优秀选手中选一名参加全省射击比赛,该运动队预先对这两名选手进行了8次测试,测得的成绩如表:
次数 | 选手甲的成绩(环) | 选手乙的成绩(环) |
1 | 9.6 | 9.5 |
2 | 9.7 | 9.9 |
3 | 10.5 | 10.3 |
4 | 10.0 | 9.7 |
5 | 9.7 | 10.5 |
6 | 9.9 | 10.3 |
7 | 10.0 | 10.0 |
8 | 10.6 | 9.8 |
根据统计的测试成绩,请你运用所学过的统计知识作出判断,派哪一位选手参加比赛更好?为什么?