题目内容

【题目】如图,在3×3的正方形网格中标出了∠1∠2,则∠1+∠2=_____

【答案】45°

【解析】

如图,连接AC,BC,根据勾股定理及其逆定理,求得∠ACB=90°,∠CAB=45°.再证明四边形ADFC是平行四边形,可得AC∥DF,根据两直线平行,同位角相等可得∠2=∠DAC,在Rt△ABD中,∠1+∠DAB=90°,又因∠DAB=∠DAC+∠CAB,所以∠1+∠CAB+∠DAC=90°,即可得∠1+∠DAC=45°,即∠1+∠2=∠1+∠DAC=45°.

如图,连接AC,BC.

根据勾股定理,AC=BC= ,AB=

∵(2+(2=(2

∴∠ACB=90°,∠CAB=45°.

∵AD∥CF,AD=CF,

∴四边形ADFC是平行四边形,

∴AC∥DF,

∴∠2=∠DAC(两直线平行,同位角相等),

Rt△ABD中,

∠1+∠DAB=90°(直角三角形中的两个锐角互余);

又∵∠DAB=∠DAC+∠CAB,

∴∠1+∠CAB+∠DAC=90°,

∴∠1+∠DAC=45°,

∴∠1+∠2=∠1+∠DAC=45°.

故答案为:45°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网