题目内容
【题目】如图,已知菱形ABCD边长为4,,点E从点A出发沿着AD、DC方向运动,同时点F从点D出发以相同的速度沿着DC、CB的方向运动.
如图1,当点E在AD上时,连接BE、BF,试探究BE与BF的数量关系,并证明你的结论;
在的前提下,求EF的最小值和此时的面积;
当点E运动到DC边上时,如图2,连接BE、DF,交点为点M,连接AM,则大小是否变化?请说明理由.
【答案】,证明见解析;的最小值是,;如图3,当点E运动到DC边上时,大小不发生变化,理由见解析.
【解析】
先证明和是等边三角形,再证明≌,可得结论;
由≌,易证得是正三角形,继而可得当动点E运动到当,即E为AD的中点时,BE的最小,根据等边三角形三线合一的性质可得BE和EF的长,并求此时的面积;
同理得:≌,则可得,所以,则A、B、M、D四点共圆,可得.
,
证明:、F的速度相同,且同时运动,
,
又四边形ABCD是菱形,
,
,
,
是等边三角形,
同理也是等边三角形,
,
在和中,
,
≌,
;
由得:≌,
,
,
,
是等边三角形,
,
如图2,当动点E运动到,即E为AD的中点时,BE的最小,此时EF最小,
,,
,
的最小值是,
中,,,
,
,
;
如图3,当点E运动到DC边上时,大小不发生变化,
在和中,
,
≌,
,
,
,
,
,
,
、B、M、D四点共圆,
.
练习册系列答案
相关题目