题目内容
【题目】观察下表:
x | 0 | 1 | 2 |
ax2 |
| 1 |
|
ax2+bx+c | ﹣3 |
| ﹣3 |
(1)求a、b、c的值,并在表内空格处填入正确的数;
(2)根据上面的结果解答问题:
①在方格纸中画出函数y=ax2+bx+c的图象;
②根据图象回答:当x的取值范围是 时,y≤0?
【答案】(1)a=1,b=﹣2,c=3,表格中的空格填0,4,﹣4;(2)①详见解析;②﹣1≤x≤3
【解析】
(1)设函数的解析式为:y=ax2+bx+c,由表格知,当x=0时,ax2+bx+c=﹣3;当x=1时,ax2=1;当x=2时,ax2+bx+c=﹣3,根据待定系数法求出函数的解析式,从而求解;
(2)①描点、连线画出函数y=ax2+bx+c的图象;
②找到函数图象在x轴下方部分对应的x的取值范围即可.
解:(1)由表知,当x=0时,ax2+bx+c=﹣3;当x=1时,ax2=1;当x=2时,ax2+bx+c=﹣3.
∴,解得:,
∴函数解析式为:y=x2﹣2x﹣3,
∴表格中的空格填0,4,﹣4,
故答案为:0,4,﹣4;
(2)①画出函数图象如图:
②由图象可知,当﹣1≤x≤3时,y≤0,
故答案为﹣1≤x≤3.
【题目】某校八年级甲、乙两班分别选5名同学参加“学雷锋读书活动”演讲比赛,其预赛成绩如图:
(1)根据上图求出下表所缺数据;
平均数 | 中位数 | 众数 | 方差 | |
甲班 | 8.5 | 8.5 | ||
乙班 | 8 | 10 | 1.6 |
(2)根据上表中的平均数、中位数和方差你认为哪班的成绩较好?并说明你的理由.
【题目】某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3台 | 5台 | 1800元 |
第二周 | 4台 | 10台 | 3100元 |
(进价、售价均保持不变,利润=销售收入-进货成本)
(1)求A,B两种型号的电风扇的销售单价.
(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.