题目内容

如图,折叠矩形纸片ABCD,先折出折痕BD,再折叠使AD边与对角线BD重合,得折痕DG,若AB=2,BC=1,则AG的长是______.
根据题意:AB=2,AD=BC=1,在Rt△ABD中,
BD=
AB2+AD2
=
4+1
=
5

过点G作GH⊥BD,垂足为H,
由折叠可知:△AGD≌△HGD,
∴AD=DH=1,设AG的长为x,HG=AG=x,BG=2-x,BH=
5
-1
在Rt△BGH中,由勾股定理得BG2=BH2+HG2
(2-x)2=(
5
-1)2+x2,4-4x+x2=5-2
5
+1+x2
解得x=
5
-1
2

即AG的长为
5
-1
2

故答案为:
5
-1
2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网