题目内容
【题目】如图,在四边形ABCD中,∠ABC=∠BCD=90°,点E为BC的中点,AE⊥DE.
(1)求证:△ABE∽△ECD;
(2)求证:AE2=AB·AD;
(3)若AB=1,CD=4,求线段AD,DE的长.
【答案】(1)证明见解析;(2)证明见解析;(3)10.
【解析】试题分析:(1)根据垂直的定义和直角三角形的性质,求出∠BAE=∠CED,然后利用两角对应相等的两三角形相似可证;
(2)根据相似三角形的性质:相似三角形的对应边成比例,以及两边对应成比例且夹角相等的两三角形相似,可证明结论;
(3)根据相似三角形的性质,由(2)的结论△ABE∽△AED得到对应边成比例,然后根据勾股定理求解.
试题解析:(1)证明:∵AE⊥DE,∴∠AED=90°,∴∠AEB+∠CED=180°-90°=90°,
∵∠ABC=90°,∴∠BAE+∠AEB=90°,∴∠BAE=∠CED.
又∵∠ABC=∠BCD,∴△ABE∽△ECD.
(2) ∵△ABE∽△ECD,∴ .
∵点E为BC的中点,∴BE=EC.
∴.
又∵∠ABC=∠AED=90°,∴△ABE∽△AED,
∴,∴AE2=AB·AD.
(3)∵△ABE∽△ECD,∴ .
∵AB=1,CD=4,BE=EC,∴BE2=AB·CD=4.
由勾股定理,得AE2=AB2+ BE2=5.
∵AE2=AB·AD,∴.
由勾股定理,得.
练习册系列答案
相关题目