题目内容
【题目】如图,已知直线与轴、轴分别交于,两点,是以为圆心,1为半径的圆上一动点,连接,,则面积的最大值是( )
A. 8 B. 12
C. D.
【答案】C
【解析】
求出A、B的坐标,根据勾股定理求出AB,求出点C到AB的距离,即可求出圆C上点到AB的最大距离,根据面积公式求出即可.
∵直线y=x-3与x轴、y轴分别交于A、B两点,
∴A点的坐标为(4,0),B点的坐标为(0,-3),3x-4y-12=0,
即OA=4,OB=3,由勾股定理得:AB=5,
过C作CM⊥AB于M,连接AC,
则由三角形面积公式得:×AB×CM=×OA×OC+×OA×OB,
∴5×CM=4×1+3×4,
∴CM=,
∴圆C上点到直线y=x-3的最大距离是1+=,
∴△PAB面积的最大值是×5×=.
故选C.
练习册系列答案
相关题目