题目内容
【题目】如图,EF⊥AD,将平行四边形ABCD沿着EF对折.设∠1的度数为n°,则∠C=______.(用含有n的代数式表示)
【答案】180°﹣n°
【解析】
由四边形ABCD是平行四边形,可知∠B=180°﹣∠C;再由由折叠的性质可知,∠GHC=∠C,即可得∠GHB=180°﹣∠C;根据三角形的外角的性质可知∠1=∠GHB+∠B=360°﹣2∠C,即可得360°﹣2∠C=n°,由此求得∠C=180°﹣n°.
∵四边形ABCD是平行四边形,
∴∠B=180°﹣∠C,
由折叠的性质可知,∠GHC=∠C,
∴∠GHB=180°﹣∠C,
由三角形的外角的性质可知,∠1=∠GHB+∠B=360°﹣2∠C,
∴360°﹣2∠C=n°,
解得,∠C=180°﹣n°,
故答案为:180°﹣n°.
练习册系列答案
相关题目