题目内容
【题目】如图,△ABC为等边三角形,点D为BC边上一动点(不与点B,C重合),∠DAE=60°,过点B作BE∥AC交AE于点E.
(1)求证:△ADE是等边三角形;
(2)当点D在何处时,AE⊥BE?指出点D的位置,并说明理由.
【答案】(1)见解析;(2)当点D为BC的中点时,AE⊥BE,理由见解析.
【解析】
(1)根据等边三角形的性质得到AB=AC,∠BAC=∠C=60°,由∠DAE=60°得到∠DAE=∠BAC,推出∠EAB=∠DAC,根据平行线的性质得到∠EBA=∠BAC,推出∠EBA=∠C,证得△AEB≌△ADC,根据全等三角形的性质得到AE=AD,即可得到结论;
(2)当D为AC中点时.根据等腰三角形的性质得到AD⊥BC,于是得到∠ADC=90°,根据全等三角形的性质得到∠AEB=∠ADC=90°,可得结论.
(1) 证明:(1)∵△ABC是等边三角形,
∴AB=AC,∠BAC=∠C=60°,
∵∠DAE=60°
∴∠DAE=∠BAC,
∴∠DAE-∠BAD=∠BAC-∠BAD,
∴∠EAB=∠DAC,
∵BE∥AC,
∴∠EBA=∠BAC,
∴∠EBA=∠C,
在△AEB和△ADC中,
,
∴△AEB≌△ADC,
∴AE=AD,
∵∠DAE=60°,
∴△ADE是等边三角形;
(2) 当D为AC中点时.
∵AB=AC,D为AC中点,
∴AD⊥BC,
∴∠ADC=90°,
∵△AEB≌△ADC,
∴∠AEB=∠ADC=90°,
∴AE⊥BE.
练习册系列答案
相关题目