题目内容

(本题满分10分,每小题5分)
如图,AB为⊙O的直径,弦CD⊥AB,垂足为点M,AE切⊙O于点A,交BC的延长线于点E,连接AC.

(1)若∠B=30°,AB=2,求CD的长;
(2)求证:AE2=EB·EC.

(1)
(2)证明略

解:(1)解法一:                        解法二:
∵AB为⊙O的直径,                    ∵AB为⊙O的直径,∠B=30°,
∴∠ACB=90°.……1分               ∴AC=AB=1,BC=AB•cos30°=…2分
∵在Rt△ABC中,∠B=30°,AB=2,   ∵弦CD⊥直径AB于点M,
∴BC=AB•cos30°=2×…2分   ∴CD=2CM,AB×CM=AC×BC……4分 
∵弦CD⊥直径AB,∠B=30°,        ∴CD=2CM=2×
∴ CM=BC=.……4分                     =2×……5分
CD=2CM=.……5分  
(其它解法请酌情给分)
(2)证明:∵AE切⊙O于点A,AB为⊙O的直径,
∴∠BAE=90°,∠ACE=∠ACB=90°, 6分
∴∠ACE=∠BAE=90°.  7分
又∵∠E=∠E,
∴Rt△ECA∽Rt△EAB.    8分
.  9分
∴AE2=EB•EC.  10分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网