题目内容
【题目】已知函数f(x)=x2﹣x,g(x)=ex﹣ax﹣1(e为自然对数的底数).
(1)讨论函数g(x)的单调性;
(2)当x>0时,f(x)≤g(x)恒成立,求实数a的取值范围.
【答案】
(1)解:∵g(x)=ex﹣ax﹣1,∴g'(x)=ex﹣a
①若a≤0,g'(x)>0,g(x)在(﹣∞,+∞)上单调递增;
②若a>0,当x∈(﹣∞,lna]时,g'(x)<0,g(x)单调递减;
当x∈(lna,+∞)时,g'(x)>0,g(x)单调递增.
(2)解:当x>0时,x2﹣x≤ex﹣ax﹣1,即
令 ,则
令φ(x)=ex(x﹣1)﹣x2+1(x>0),则φ'(x)=x(ex﹣2)
当x∈(0,ln2)时,φ'(x)<0,φ(x)单调递减;
当x∈(ln2,+∞)时,φ'(x)>0,φ(x)单调递增
又φ(0)=0,φ(1)=0,
∴当x∈(0,1)时,φ(x)<0,即h'(x)<0,∴h(x)单调递减;
当x∈(0,+∞)时,φ(x)=(x﹣1)(ex﹣x﹣1>0,即h'(x)>0,
∴h(x)单调递增,
∴h(x)min=h(1)=e﹣1,
∴实数a的取值范围是(﹣∞,e﹣1].
【解析】(1)求出g'(x)=ex﹣a,由a≤0和a>0分类讨论,由此能求出结果.(2)当x>0时, 令 ,则 令φ(x)=ex(x﹣1)﹣x2+1(x>0),则φ'(x)=x(ex﹣2),由此利用导数性质能求出实数a的取值范围.
【题目】某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:
x | 30 | 32 | 34 | 36 |
y | 40 | 36 | 32 | 28 |
(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);
(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?
(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?