题目内容
【题目】在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.若直线l的极坐标方程为 ,曲线C的极坐标方程为:ρsin2θ=cosθ,将曲线C上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线C1 . (Ⅰ)求曲线C1的直角坐标方程;
(Ⅱ)已知直线l与曲线C1交于A,B两点,点P(2,0),求|PA|+|PB|的值.
【答案】解:(I)曲线C的极坐标方程为:ρsin2θ=cosθ,即ρ2sin2θ=ρcosθ,化为直角坐标方程:y2=x. 将曲线C上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线C1:y2=2(x﹣1).
(II)直线l的极坐标方程为 ,展开可得: ρ(cosθ+sinθ)﹣2=0,可得直角坐标方程:x+y﹣2=0.
可得参数方程: (t为参数).
代入曲线C1的直角坐标方程可得:t2+2 t﹣4=0.
解得t1+t2=﹣2 ,t1t2=﹣4..
∴|PA|+|PB|=|t1﹣t2|= = = .
【解析】(I)曲线C的极坐标方程为:ρsin2θ=cosθ,即ρ2sin2θ=ρcosθ,化为直角坐标方程:y2=x,通过变换可得曲线C1的方程. (II)直线l的极坐标方程为 ,展开可得: ρ(cosθ+sinθ)﹣2=0,利用互化公式可得直角坐标方程.可得参数方程: (t为参数),代入曲线C1的直角坐标方程可得:t2+2 t﹣4=0,利用|PA|+|PB|=|t1﹣t2|= 即可得出.
【题目】一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:
售价x(元/千克) | … | 50 | 60 | 70 | 80 | … |
销售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y与x的函数关系式;
(2)该批发商若想获得4000元的利润,应将售价定为多少元?
(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?