题目内容
【题目】(11·钦州)把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若BF=4,FC=2,则∠DEF的度数是_ .
【答案】60º
【解析】
根据折叠的性质得到DF=BF=4,∠BFE=∠DFE,在Rt△DFC中,根据含30°的直角三角形三边的关系得到∠FDC=30°,则∠DFC=60°,所以有∠BFE=∠DFE=(180°-60°)÷2,然后利用两直线平行内错角相等得到∠DEF的度数.
解:∵矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF,
∴DF=BF=4,∠BFE=∠DFE,
在Rt△DFC中,FC=2,DF=4,
∴∠FDC=30°,
∴∠DFC=60°,
∴∠BFE=∠DFE=(180°-60°)÷2=60°,
∴∠DEF=∠BFE=60°.
故答案为60.
练习册系列答案
相关题目
【题目】已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:
x | … | 0 | 4 | … | |
y | … | 0.37 | -1 | 0.37 | … |
则方程ax2+bx+1.37=0的根是( )
A.0或4B.或C.1或5D.无实根