题目内容

【题目】如图,在△ABC中,∠C=90°,在AB边上取一点D,使BD=BC,过D作DE⊥AB交AC于E,AC=8,BC=6.求DE的长.

【答案】解:在△ABC中,∠C=90°,AC=8,BC=6, ∴AB= =10,
又∵BD=BC=6,∴AD=AB﹣BD=4,
∵DE⊥AB,∴∠ADE=∠C=90°,
又∵∠A=∠A,∴△AED∽△ABC,

∴DE= = ×6=3.
【解析】依题意易证△AED∽△ABC,根据相似三角形的对应边的比相等,即可求出DE的长.
【考点精析】关于本题考查的勾股定理的概念和相似三角形的判定与性质,需要了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网