题目内容

【题目】如图,已知二次函数.

(1)求证:它的图象与x轴必有两个不同的交点;

(2)这条抛物线与x轴交于两点A(x1,0),B(x2,O)(x1<x2),y轴交于点C,AB=4,⊙MA,B,C三点,求扇形MAC的面积S;

(3)(2)的条件下,抛物线上是否存在点P,PD⊥x轴于D,使△PBD被直线BC分成面积比为1:2的两部分?若存在,请求出P点的坐标;若不存在,请说明理由.

【答案】(1)见解析;(2);(3)(3)P为(2,-3)或().

【解析】

(1)计算判别式△=(m+3)2>0,即可判断抛物线与x轴有两个不同的交点.

(2)根据抛物线的解析式,可表示出A、B的坐标,根据AB=4,可求出m的值,从而确定该抛物线的解析式,即可得到A、B、C的坐标;根据B、C的坐标,可得到∠OBC=45°,根据圆周角定理知∠AMC=90°,即△AMC是等腰直角三角形,AC的长易求得,即可得到半径AM、MC的长,利用扇形的面积公式,即可求得扇形AMC的面积.
(3)设PDBC的交点为E,此题可分成两种情况考虑:
①当△BPE的面积是△BDE2倍时,由于△BDE和△BPD同高不等底,那么它们的面积比等于底边的比,即DE=PD,可设出P点的坐标,那么E点的纵坐标是P点纵坐标的,BD的长为B、P横坐标差的绝对值,由于∠OBC=45°,那么BD=DE,可以此作为等量关系求出P点的坐标;
②当△BDE的面积是△BPE2倍时,方法同①.

(1)∵△=(m+3)2>0,

∴与x轴有两个不同的交点.

(2)∵

∴m=1

∴A(-1,0),B(3,0),C(0.3)

∴M(1,1)

∴R=,n=90°

(3)设P为(t, ),则D为(t,0)

因为,所以DP与BC的交点Q为(t,t-3)

当△PBD被BC分为1:2两部分时,

解得t1=2,t2=3(舍),t3=3(舍),t4=

综上,P为(2,-3)或(

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网