题目内容
如图,OA=6,B为OA中点,P在以O为圆心OB为半径的圆上,连结PA,当PA中点Q在⊙O上时,AP的长是( )
A. | B. | C. | D. |
C
先构造直角三角形QBC,根据三角形中位线定理分别求出QB、QC的长,再根据余弦的定义即可求出结果.
解:当点P运动到恰好点Q落在⊙O上,连接QB,OP,BC,再连接QO并延长交⊙O于点C,则∠CBQ=90°(直径所对的圆周角是直角)
∵B、Q分别是OA、AP的中点,
∴BQ∥OP,
∵OP=OB=BA=OA=2,
∴QB=1
在Rt△CQB中,∠CBQ=90°
∴cos∠OQB==.
故选C.
本题综合考查了三角形中位线定理,余弦的定义和圆的性质,解题的关键是通过作辅助线构造直角三角形.
解:当点P运动到恰好点Q落在⊙O上,连接QB,OP,BC,再连接QO并延长交⊙O于点C,则∠CBQ=90°(直径所对的圆周角是直角)
∵B、Q分别是OA、AP的中点,
∴BQ∥OP,
∵OP=OB=BA=OA=2,
∴QB=1
在Rt△CQB中,∠CBQ=90°
∴cos∠OQB==.
故选C.
本题综合考查了三角形中位线定理,余弦的定义和圆的性质,解题的关键是通过作辅助线构造直角三角形.
练习册系列答案
相关题目