题目内容
【题目】如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E,点K为弧AC上的一个动点(K不与A,C重合),AK,DC延长线交于点F,连接CK.
(1)求证:△ADF∽△CKF
(2)若AB=10,CD=6,求tan∠CKF的值
【答案】(1)见解析;(2)3
【解析】
(1)证明∠1=∠D,又∠F=∠F,可说明△ADF∽△CKF;
(2)连接OD,利用垂径定理即勾股定理求出OE长,则AE可知,在Rt△ADE中,tan∠ADE值可求,又∠CKF=∠ADE,所以tan∠CKF可求.
(1)∵四边形ADCK内接于⊙O,
∴∠D+∠2=180°.
∵∠1+∠2=180°,
∴∠1=∠D.
又∠F=∠F,
∴△ADF∽△CKF;
(2)连接OD,
∵AB=10,
∴AO=DO=5.
∵直径AB⊥CD,CD=6,
∴DE=CD=3.
在Rt△ODE中,利用勾股定理可得
,
∴AE=OA+OE=9.
在Rt△ADE中,,
∴,
∵∠CKF=∠ADE,
∴tan∠CKF=3.
练习册系列答案
相关题目