题目内容
【题目】如图,已知∠AOB=60°,点P为射线OA上的一个动点,过点P作PE⊥OB,交OB 于点E,点D在∠AOB内,且满足∠DPA=∠OPE,DP+PE=6.
(1)当DP=PE时,求DE的长;
(2)在点P的运动过程中,请判断是否存在一个定点M,使得的值不变?并证明你的判断.
【答案】(1)DE=3;(2)当M点在射线OA上且满足OM=2时,的值不变,始终为1.理由见解析.
【解析】
(1)作PF⊥DE交DE于F.由直角三角形的两锐角互余得到∠OPE=30°,在由平角的定义,得出∠EPD=120°.然后解三角形DPE即可得出结论.
(2)当点P与点M不重合时,延长EP到K使得PK=PD.可以证明△KPM≌△DPM,得到MK=MD.作ML⊥OE于L,MN⊥EK于N.解Rt△MLO得到ML的长,易证四边形MNEL为矩形,得到EN=ML=3.通过证明MK=ME,得到ME=MK=MD,即可得到=1.
当点P与点M重合时,结论也成立.
(1)作PF⊥DE交DE于F.
∵PE⊥BO,∠AOB=60°,∴∠OPE=30°,∴∠DPA=∠OPE=30°,∴∠EPD=120°.
∵DP=PE,DP+PE=6,∴∠PDE=30°,PD=PE=3,∴DF=PDcos30°=,∴DE=2DF=.
(2)当M点在射线OA上且满足OM=时,的值不变,始终为1.理由如下:
①当点P与点M不重合时,延长EP到K使得PK=PD,连接MK.
∵∠DPA=∠OPE,∠OPE=∠KPA,∴∠KPA=∠DPA,∴∠KPM=∠DPM.
∵PK=PD,PM是公共边,∴△KPM≌△DPM,∴MK=MD.
作ML⊥OE于L,MN⊥EK于N.
∵MO=,∠MOL=60°,∴ML=MOsin60°=3.
∵PE⊥BO,ML⊥OE,MN⊥EK,∴四边形MNEL为矩形,∴EN=ML=3.
∵EK=PE+PK=PE+PD=6,∴EN=NK.
∵MN⊥EK,∴MK=ME,∴ME=MK=MD,即=1.
②当点P与点M重合时,由上述过程可知结论成立.