题目内容
【题目】如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是___.
【答案】2
【解析】
连接AE,由折叠的性质可得AF=AB=AD,BG=GF,易证Rt△ADE≌Rt△AFE,得到DE=EF,设DE=x,在Rt△CEG中利用勾股定理建立方程求解.
如图所示,连接AE,
∵四边形ABCD为正方形,
∴AB=BC=CD=AD=6,∠B =∠C=∠D=90°
∵G为BC的中点
∴BG=GC=3
由折叠的性质可得AF=AB=6,BG=GF=3,
在Rt△ADE和Rt△AFE中,
∵AE=AE,AF=AD=6
∴Rt△ADE≌Rt△AFE(HL)
∴DE=EF
设DE=EF=x,则EC=6-x
在Rt△CEG中,GC2+EC2=GE2,即
解得
故答案为:2.
【题目】钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒 肺炎的防护知识,并鼓励社区居民在线参与作答《2020 年新型冠状病毒防治全国统一考试 (全国卷)》试卷(满分 100 分),社区管理员随机从甲、乙两个小区各抽取 20 名人员的 答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:
收集数据
甲小区:85 80 95 100 90 95 85 65 75 85 90 90 70 90 100 80 80 90 95 75
乙小区:80 60 80 95 65 100 90 85 85 80 95 75 80 90 70 80 95 75 100 90
整理数据
60≤x≤70 | 70<x≤80 | 80<x≤90 | 90<x≤100 | |
甲小区 | 2 | 5 | 8 | 5 |
乙小区 | 3 | 7 | 5 | 5 |
分析数据
平均数 | 中位数 | 众数 | |
甲小区 | 85.75 | 87.5 | a |
乙小区 | 83.5 | b | 80 |
应用数据
(1)填空:a = ,b =___,
(2)若甲小区共有 800 人参与答卷,请估计甲小区成绩大于 90 分的人数为_____________.
【题目】名闻遐迩的采花毛尖明前茶,成本每厅400元,某茶场今年春天试营销,每周的销售量y(斤)是销售单价x(元/斤)的一次函数,且满足如下关系:
x(元/斤) | 450 | 500 | 600 |
y(斤) | 350 | 300 | 200 |
(1)请根据表中的数据求出y与x之间的函数关系式;
(2)若销售每斤茶叶获利不能超过40%,该茶场每周获利不少于30000元,试确定销售单价x的取值范围.